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Summary

The effects of open loop higher harmonic control (HHC)

on rotor hub loads, performance, and push rod loads of a

Sikorsky S-76 helicopter rotor at high airspeeds (up to
200 knots) and moderate lift (10,000 lb) have been studied

analytically. The present analysis was performed as a part

of a wind tunnel pre-test prediction and preparation

procedure, as well as to provide analytical results for post-

test correlation efforts. The test associated with this study

is to be conducted in the 40- by 80-Foot Wind Tunnel of

the National Full-Scale Aerodynamics Complex (NFAC)
at the NASA Ames Research Center. The results from this

analytical study show that benefits from HHC can be

achieved at high airspeeds. These results clear the way for

conducting (with the requirement of safe pushrod loads)

an open loop HHC test at high airspeeds in the 40- by
80-Foot Wind Tunnel using an S-76 rotor as the test
article.

Introduction

Higher harmonic control (HHC) is one of the several
active control concepts that have the goal of reducing

helicopter vibration. HHC has been researched, flight and

wind tunnel tested by several investigators and organiza-

tions (refs. 1-15). To date, due to various adverse consid-

erations (weight, cost, reliability, complexity, etc.), HHC

has not yet been implemented in a production helicopter.

One possible research avenue would be to successfully

test a full-scale, modern, moderate lift rotor at high air-

speeds with HHC installed; these airspeeds would

presumably exceed those that have been involved in

previous full-scale testing. With this additional, high air-
speed demonstration of the HHC concept, perhaps future

trade-off studies comparing HHC to other vibration
reduction methods will conclude that HHC is indeed a

viable progressive alternative to existing vibration control

methods for implementation on a production helicopter.

Open loop HHC testing involving a 44-ft-diameter

Sikorsky S-76 articulated rotor is to be conducted in the
40- by 80-Foot Wind Tunnel at airspeeds up to 200 knots
and a thrust level of 10,000 lb. This test would be the first

of its kind due its unique combination of airspeed, thrust,
and full-scale characteristics.

Analytical Model

The comprehensive rotorcraft analysis code

CAMRAD/JA (ref. 16) was used to calculate the pushrod

loads, fixed system hub loads, and the rotor lift to drag

ratio, L/D. The various features of the S-76 analytical

aeroelastic model are given below.

As noted earlier, CAMRAD/JA was used to analytically

model the four-bladed S-76 rotor mounted on the NASA

Ames Rotor Test Apparatus (RTA). The fixed system

properties that were considered were those of the NFAC

80- by 120-Foot Wind Tunnel and not those of the NFAC

40- by 80-Foot Wind Tunnel. Unpublished analytical

work performed at NASA Ames shows conclusively that
due to the inherently sound design of the two support

systems (coupled with the RTA) that are associated with
these wind tunnels, the rotor parameters of interest (hub

loads) are not sensitive to the support system modelling.

This implies that the NFAC 80-by 120-Foot an_l 40- by
80-Foot Wind Tunnel support systems correctly approxi-

mate a fixed hub configuration.

The following describes the analytical model exercised in

CAMRAD/JA for the present application. A free wake

model was used at all airspeeds (40 to 200 knots). The
trim procedure simulated wind tunnel trim; the thrust was

specified (10,000 lb) with the shaft angle varying with air-

speed, and with zero first harmonic flapping. The present

trim parameters are given in table 1. On the structural
side, the S-76 blade was modelled by four bending modes

(with frequencies 2.72P, 4.72P, 4.97P, and 12.91P) and
2 torsion modes (5.84P, 10.72P). In CAMRAD/JA, force

integration (for example, refs. 17 and 18) was selected as
the method to calculate loads. A static stall model was

used with table look-up for the S-76 airfoil data.

Appendix 1 contains a listing of the CAMRAD/JA input

stream for the S-76 rotor as modelled in the present

application.

Even though it is the airframe vibrations that are of pri-
mary interest, it is assumed that a uniform reduction in the

fixed system hub loads will lead to a gradual lessening of

the vibrations created by these hub loads. Undoubtedly,

there exist helicopter designs which, perhaps due to
phasing idiosyncrasies, may experience increased vibra-

tion at some fixed system locations even though the hub
loads have been made smaller. Nevertheless, the safest

approach would be to attempt to reduce the hub loads in a
uniform manner. In this study, the fixed system 4P hub

shears are taken as the parameters that are to be reduced

by HHC.

In the analysis each nP HHC input is assumed to be in the

rotating system and is defined as: amplitude * sin(n'Psi +

Phase), where the amplitude is in degrees, Psi is the

azimuthal coordinate, and Phase is the input phase in

degrees. The HHC harmonic "n" takes on the individual
values of 3, 4 or 5.



Considerations for the Test Envelope

As might be expected, the high airspeed environment
raises immediate concern about one aspect of HHC,

namely, the increase in pushrod loads when the control

system is operating under conditions in which HHC is

active. The present pre-test analysis addresses this safety

concern by first correlating existing experimental data on

pushrod loads with present analytical predictions and then
studying the analytical HHC loads for the test conditions.

Briefly, the present analytical results (given later) show

that the pushrod load endurance limit is exceeded only at

the highest airspeeds in the planned test envelope. Based

on these limits, the test envelope may be restricted to
airspeeds below 200 knots. Note that the RTA control

system should be able to generate the required 1deg (or
smaller) HHC input.

Results

Pushrod Load Trends

Figure I shows the correlation of the S-76 pushrod loads
from a 1977 test in the 40- by 80-Foot Wind Tunnel

(ref. 19) and from the present analysis. The correlation is
reasonable.

The pushrod load trends as predicted by analysis are

shown in figures 2 to 4 for varying high airspeeds, HHC

phase, and HHC harmonic (3P or 4P or 5P). Considering

that the flight test of reference 6 showed that an optimum

HHC setting is one that is predominantly composed of

3P input, it is encouraging to see from these figures that it
is the 4P input that causes the maximum increase in

pushrod loads, with the 3P and 5P inputs resulting in only

slight increases over the endurance limit. Although refer-

ence 6 considered airframe vibration whereas the present
study considers hub loads, one would expect that the

character of the optimum setting (3P and a small amount

of 5P input) would not vary radically for the same rotor

system, the S-76.

In order to obtain a summary view of the pushrod load

increase due to HHC, a survey was conducted of the

pushrod loads with HHC active (1 dog input at four differ-

ent phase values 0, 90, 180, and 270 dog). The data base

here is the same as that in figures 2 to 4. Figures 5 to 7

each show three summary trends with airspeed: 1) base-

line pushrod loads; 2) pushrod loads resulting from an

"optimum" HHC setting; and 3) The maximum pushrod
loads with HHC active. The "optimum" setting is defined

as that phase which minimizes the inplane shears. The
S-76 pushrod endurance limit of 760 lb is also shown.

Hub Shear Trends

The trends of the baseline (no HHC) inplane shears with

airspeed are shown in figure 8. It is the high airspeed
regime, 140 to 200 knots, that is of interest here. HHC at

airspeeds up to approximately 140 knots has been

explored in flight (ref. 6).

For the S-76, the inplane shears contribute substantially to

the airframe vibration (and hence the presence of the 3P

and 5P inplane bifilars on the production S-76 aircraft

hub). Also, in the flight test of reference 6 these bifilars

were rendered inoperative thus allowing for HHC to be
the only vibration reduction mechanism. Therefore, for

the present wind tunnel test with the S-76 rotor as the test

article and without any bifilars installed, the 4P fixed

system inplane shears should be taken as the parameters
that are to be minimized.

Accordingly, figures 9 and 10 show the effect of optimum

("optimum" has been defined earlier as that phase setting

of a 1-deg HHC input which results in minimum inplane

shears) 3P HHC on the S-76 longitudinal and lateral

shears. Note that these predicted shears and the benefits

due to HHC are both sufficiently large that they can be

clearly measured by the RTA steady/dynamic rotor bal-

ance system. The analysis predicts that benefits due to

HHC are maintained at high airspeeds for this modern

rotor system. Also, a comparison of these figures with
figure 9 of reference 6 (which shows the S-76 airframe

cockpit centerline vibration variation with airspeed) lends

some support to the present analytical results in that the

trends with and without HHC are roughly parallel to each

other (in all three figures). The trends are parallel because
the HHC amplitude is kept constant: I deg in the present

case and approximately 0.7 deg in the flight test of
reference 6.

For completeness, the vertical shear, which is initially

smaller than the inplane shears, is shown in figure 11.

This shear increases slightly for an optimum 3P HHC

input that minimizes the inplane shears.

For completeness, the rest of this set of open loop HHC

trends are shown in figures 12 to 14 for the 4P input and

figures 15 to 17 for the 5P input. Generally, these figures

show the same trends as for the 3P input case (with HHC

benefits being maintained at high airspeeds). Figure 16 is
an exception in that the lateral shear increases due to a

5P input that minimizes the longitudinal shear.

Rotor Performance (Lift/Drag)

The baseline trend of the S-76 rotor lift/drag (L/D) with
airspeed is given in figure 18. With this baseline



prediction,theL/DtrendwithHHCactive(optimum
HHCinputforminimuminplaneshears)wasstudied.A
smallbenefitispredictedduetoa3PHHCinputthat
minimizesinplaneshears(fig.19)withasizeablebenefit
beingpredictedathighairspeedsduetoa4Pinput
(fig.20).Figure21showsthata5Pinputdoesnotresult
inanysignificantL/Dbenefits.

Concluding Remarks

The results from this analytical study show that benefits

from HHC can be achieved at high airspeeds. These

results clear the way for conducting with a safe pushrod

load, open loop HHC testing of the S-76 rotor in the 40-

by 80-Foot Wind Tunnel at airspeeds up to 200 knots.

Analytical results for a post-test correlation effort are in

place.



Appendix 1. CAMRAD/JA Input Stream for the S.76 Rotor
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Table 1. CAMRAD/JA Trim Parameters for the Present S-76 Application

(positive series for the cyclics, negative shaft angle represents downward tilt)

Airspeed, Collective, Cos cyclic, Sin cyclic, Shaft angle,

knots deg deg deg deg

80 7.79 -2.69 1.32 -1.29

140 10.32 -2.52 2.57 -3.95

160 11.93 -2.48 3.69 -5.16

180 14.11 -2.82 4.99 -6.54

200 16.80 -3.67 6.40 -8.08
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Figure 1. Correlation of pushrod loads, S-76, 10,000 lb.
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